
Deep Convolutional Encoder-Decoder
for Myelin and Axon Segmentation

Rassoul Mesbah
Department of Computer Science

University of Otago, New Zealand

Email: rassoul@cs.otago.ac.nz

Brendan McCane
Department of Computer Science

University of Otago, New Zealand

Email: mccane@cs.otago.ac.nz

Steven Mills
Department of Computer Science

University of Otago, New Zealand

Email: steven@cs.otago.ac.nz

Abstract—We propose a fully automatic method for segmenting
myelin and axon from microscopy images of excised mouse spinal
cord based on Convolutional Neural Networks (CNNs) and Deep
Convolutional Encoder-Decoder. We compare a two-class CNN,
multi-class CNN, and multi-class deep convolutional encoder-
decoder with traditional methods. The CNN method gives a
pixel-wise accuracy of 79.7% whereas an Active Contour method
gives 59.4%. The encoder-decoder shows better performance
with 82.3% and noticeably shorter classification time than CNN
methods.

I. INTRODUCTION

Segmentation is a common step in medical image process-

ing, and in this work we are interested in identifying myelin

in microscope images of the spinal cord. Myelin acts as an

insulating material to increase signal transmission speed in

mammals [9]. The loss of the myelin sheath is a common

symptom of several auto-immune diseases such as multiple

sclerosis, leukodystrophy, Charcot-Marie-Tooth, and so on [8].

Moreover, there are other applications for this segmentation

task such as studying brain connectivity and maturation [19].

Fig. 1 shows a sample microscopy image of an excised

mouse spinal cord and the corresponding labelled ground truth.

Myelin is visible as darker material surrounding the brighter

axons. However, there are areas with the same intensity as

myelin that are axon or background and areas with the same

intensity as axon that are usually background. This makes

automatic extraction of the myelin challenging.

(a) (b)

Fig. 1. (a) Microscopy image of the excised mouse spinal cord ; (b) Ground
truth: areas with white colour correspond to myelin regions and the grey
regions represent axon.

II. MEDICAL IMAGE SEGMENTATION

There are many techniques which have been proposed for

similar applications which can be roughly divided into three

categories: those based on geometry or shape such as active

contours and Hough transform, intensity based approaches

such as histogram, morphology, graph-cut, and those employ-

ing learning based approaches such as cascade classifier and

support vector machines.

Active contour model [11] is based on fitting snakes (con-

nected curves) to nerve boundaries, image energy derived

from the features in the frame, and constraint energy that

ensures smoothness of the boundary. Active shape model

techniques [7] employ variations in statistical information

(mostly geometric characteristics) in features to detect shapes

in the image. The Hough transform [5] can detect curves and

is applicable for nerve boundary detection in our microscopy

images. This technique and also similar methods such as fitting

ellipses to scattered point data [6] are expensive to compute

since Hough transform uses a 5-dimensional parameter space.

Moreover, the main problems for using these methods are the

very large number of axons per image.

MacDonell [14] employed an active contour method based

on two different parameter optimisation techniques using

ground truth and raw images for tuning the parameters. He

also performed an experiment based on the combination of

Canny edge detection and Otsu’s methods with active contours.

The combination of Canny edge detection with active contours

achieved 59.2% accuracy in pixel-wise segmentation task.

Methods based on intensity such as Otsu’s analysis [15],

[23], multilevel Fukunaga [20] and Renyi entropy [21] seg-

ment the image by classifying the pixels into two or more

intensity classes. Using intensity as the only feature for

segmentation is not very precise as there are some regions

with the same intensity as the myelin which are not myelin.

Using morphological operations can reduce this error to some

degree but cannot eliminate it.

A Haar cascaded classifier [10] is comprised of several

simple features placed in a hierarchical topology. This archi-

tecture (decision tree) can be used for rapid object detection

tasks. Han et al. [10] used Haar cascaded classifiers for radic-

ular cysts and odontogenic keratocystic epithelia classification

which is roughly similar to our myelin and axon segmentation978-1-5090-2748-4/16/$31.00 c©2016 IEEE

problem. The accuracy of the classifier is very dependent on

the variance of the shape and orientation of cells from the

expected norm.

Other work on the myelin segmentation problem includes

a semi-automatic method for axon and myelin segmentation

based on the combination of thresholding techniques and a

series of morphological operations proposed by More et al.
[16]. The authors claimed that their method achieved 84.3%

accuracy in axon identification (not pixel-wise segmentation).

The method, however, is dependent on manual supervision for

correction of misclassified regions.

These methods mostly have one thing in common: they all

work based on generic features (apart from cascade classifiers

in which the features to use are chosen from a very large

set and therefore the process is similar to learning features).

Convolutional neural networks (CNNs) offer the potential to

learn specific features for this task, improving segmentation

performance. To the best of our knowledge, CNNs have not

been used for myelin and axon segmentation before.

The core aspect of CNN is that the features are not defined

by the human but learnt automatically. They are charac-

terised by weight sharing (replication), convolution, and sub-

sampling. The convolution of 2-dimensional masks (filters) are

shifted step by step across a 2-dimensional array of input

values, which may be the image to be processed or the

output of an earlier layer of the network. Each layer maps

the inputs from the previous layer to the higher-level feature

space by a downsampling unit (pooling) that reduces the

resolution in order to reduce the network’s sensitivity to small

variations. The output layer is usually a classifier layer and

fully connected. CNNs can find objects in the frame regardless

of location and scale [22].

This location and scale invariance is due to the weight

sharing and downsampling (pooling) function which makes

the output less sensitive to the exact location of the objects

including their boundaries. As a result, there is usually a trade-

off between the object detection accuracy and localisation.

Increasing the depth of the architecture can improve the former

while weakening the latter.

Lots of research has been done in order to overcome the

trade-off between accurate object recognition and localisation

with CNNs. Chen et al. [4] propose a method in which they

combine CRF and deep CNN (DCNN) architecture for dealing

with semantic pixel-wise segmentation problems. The idea be-

hind their algorithm is that adding the conditional random field

to the final layer of DCNN helps utilise global information

in the classification task and also avoids premature decision-

making during the training phase of deep convolutional neural

netwroks. Liu et al. [12] trained their CRF using CNN feature

maps in order to apply local dependencies of the higher

level features to the segmentation algorithm. Post-processing

based on conditional random fields shows good performance

dealing with more dominant classes such as salient objects and

background rather than small structures with irregular label

frequencies.

Long et al. [13] introduced the idea of fully convolutional

networks (FCNs) for semantic segmentation in which the

output of each fully convolutional module can be mapped

onto the bigger frame than the input window(s). The in-

terpolation function is to be learned during training. They

devised the unpooling layer as an up-sampling function using

the pooling indices of the corresponding MaxPooling layer

since it helps to achieve higher precision in the reconstruction

of the feature maps. The authors replaced the CNN’s fully

connected classifier by multiple unpoolings uses the corre-

sponding convolutional layer’s feature maps as input and each

followed by an up-convolution layer. The fully convolutional

layers’ outputs are all concatenated in one mask to feed into

a softmax classifier.

Fully convolutional module classifies all pixels in the frame

simultaneously. Helped by more information about the neigh-

bouring output pixels during the training, FCN shows higher

accuracy in semantic pixel-wise segmentation task than similar

CNN architectures. Despite the improvement in accuracy

and overall classification time, FCN suffers from two main

drawbacks. High-resolution structures can be neglected in the

feature reconstruction due to the fact that fully convolutional

procedure is not capable of estimating very complicated func-

tions. Another shortcoming (which is due to the FCN’s fixed-

size input frame) is that some pixels of the salient objects or

the objects which are relatively smaller than the frame size

can be mislabelled [17].

Brosch et al. [3] propose encoder-decoder architecture in

which they use ground truth image as output reference.

Encoder builds a hierarchy of features in which the highest

level features can be extracted in the last layer. These low-

resolution features are appropriate for object detection task

while they include not much information about location. In

order to reconstruct the input image (in the absence of noise),

the decoder architecture is used to up-sample the feature maps

and use a convolutional filter to learn the lower level features

with higher resolution. Brosch et al. [3] also propose an

optimised loss function in order to deal with unbalanced class

distribution problem. Although this feed-forward architecture

with single-step training phase benefits from denoising and

feature reconstruction properties, it still suffers from lack of

accuracy in detecting high resolution structures.

In order to address this problem, Badrinarayanan et al. [1]

and Noh et al. [18] employed an encoder-decoder architec-

ture in which they placed an up-convolution layer between

encoder and decoder units. They used unpooling function in

the decoder architecture, each unpooling followed by an up-

convolution layer. Then, Badrinarayanan et al. [2] proposed a

more optimised architecture regarding memory and computa-

tions. In this encoder-decoder architecture, the up-convolution

layers in the decoder unit are replaced by convolutional

layers while the up-convolution layer between the encoder and

decoder units is preserved as an optional module. The authors

claimed that they propose a architecture which can be used

for a variety of semantic pixel-wise segmentation tasks.

(a)

(b)

Fig. 2. Our convolutional neural networks’ architecture: (a) Two-class CNN; (b) Three-class CNN

III. METHOD

We employ two different feed-forward convolutional net-

work architectures: CNN and convolutional encoder-decoder

in which the former designed to classify one pixel of 32× 32
input frame while the latter aims the whole frame simulta-

neously. The deep convolutional encoder-decoder implemen-

tation is inspired by the architecture proposed by Badri-

narayanan et al. [2] and based on our three-class CNN

architecture.

A. Convolutional Neural Network Design

Based on the classification accuracies during experiments,

we have chosen our CNN to be comprised of 3 convolutional

layers (CL). Each CL is followed by a sub-sampling layer. We

used a fully connected architecture with one hidden layer as

our classifier. The non-linear activation function is chosen to

be hyperbolic tangent.

We performed experiments based on different architectures

for our CNN. We tested our network with two and three

convolutional layers, 4, 8, 9, and 12 features in our first layer,

16, 64, 81, and 144 features in the second convolutional layer,

and 256, 512, and 1024 in the third layer of convolution. We

also used variety of training iterations up to 150.

The most accurate architecture among the CNNs been tested

during our experiments contains eight 3 × 3 convolutional

filters at the first layer. Using MaxPooling function as a sub-

sampling layer, the dimensions of the feature maps reduce

to 16 × 16 as the input is a 32 × 32 pixel greyscale image.

The next CL consists of sixty four 3× 3 convolutional filters,

each is connected to the previous feature maps. The same

downsampling function is used to reduce the size of the feature

maps to 8×8. We employed 256 feature masks (3×3) for our

third CL, each is connected to all second layer’s masks. The

output is 256 feature maps with a size of 4× 4 pixels which

represent the higher level features.

We have experimented with two variants of the CNN

architecture. The first uses two two-class CNNs (myelin or

not myelin, and axon or not axon); and the second uses a

single CNN for all three classes (myelin, axon, background).

The fully connected layer has 256 × 4 × 4 input nodes fully

connected to the 256 nodes in the hidden layer. The number of

output node(s) is one for two-class CNN, and three in multi-

class CNN (Fig. 2)

B. Deep Convolutional Encoder-Decoder Design

The encoder unit is similar to our three-class CNN archi-

tecture excluding the fully connected layers. Decoder contains

three units each consisting of an unpooling followed by a

convolutional layer in which the unpooling layers up-sample

the feature maps using the corresponding encoder’s MaxPool-

ing indices.

All the convolutional masks’ sizes are chosen to be 3×3. We

employed 256 convolutional masks in the first decoder unit,

64 and 8 masks in the second and third layers, respectively.

Three 32 × 32 feature maps in the last layer of our decoder

unit are fed into a SoftMax classifier to be able to have one

correspondingly-sized output image.

The convolutional layer that connects encoder and decoder

units has 256 masks each of size 1 × 1. All the activation

functions are chosen to be rectified linear units (ReLU) in

Fig. 3. Our Deep Convolutional Encoder-Decoder’s architecture

TABLE I
THE DISTRIBUTIONS OF OUR DATASETS

Dataset Axon Myelin Background

Encoder-Decoder 24.8% 43.5% 31.7%

CNN: Three-class 24.8% 43.5% 31.7%

CNN: Two-class 1 24.8% - 75.2%

CNN: Two-class 2 - 43.5% 56.5%

order to make the reconstruction of the feature maps theoret-

ically possible [13]. Fig. 3 represents our deep convolutional

encoder-decoder’s architecture.

C. Training and Experimental Design

We used 35 microscopy images of the excised mouse spinal

cord as our dataset. The images in this data set are 700× 700
pixels, and have been previously used by MacDonell [14].

We performed 35 trials, one with each image excluded and

the others used for training. To create the training set, we

randomly sampled the remaining 34 images using a 32 × 32
window size for 3,000 samples from each image.

At runtime, for the CNN architectures, a 32 × 32 window

is shifted across the image with one pixel shifts, thus creating

447,561 classification tasks for each image (only the pixel at

16,16 is classified). For the encoder-decoder architecture, each

pixel within a 32×32 sub-window is classified simultaneously,

and therefore only 441 classification tasks are needed to cover

the entire image. The label to be learned by CNN for each

32× 32 image is the label of the pixel at coordinate (16, 16).

The output of the encoder-decoder is a three dimensional

matrix of size 3 × 32 × 32. The first dimension is a one-hot

encoding of the class label (either 1 or 0 in each element, with

only one element equal to one). Table 1 shows the distribution

of our dataset.

We have used automatic stochastic gradient descent, to

avoid overfitting to the training data [22]. We observed the

error during the training process of our CNNs, and found that

there is a minimum error at the fourth or fifth iteration, for

this specific problem. As the majority of our CNNs have the

minimum training error at the fifth iteration, we have chosen

the maximum number of iterations to be five. In the same

way, 25 iterations are chosen for the encoder-decoder training

phase.

The Torch7 library was used for all implementation

(www.torch.ch). All experiments were performed on an

iMac with a 3.2 GHz Core i5 quad-core processor for our

implementations. Each CNN training iteration took approx-

imately 7 minutes to run; and, consequently, the training

time (including 5 iterations) for each module was about 35

minutes. The total encoder-decoder training time (including

25 iterations) was nearly 375 minutes since each iteration over

the dataset took roughly 15 minutes.

IV. RESULTS & DISCUSSION

MacDonell [14] includes the most recent and accurate

results for automatic segmentation of this data set. In or-

der to compare our methods with his we adopt the same

evaluation metric as he used. He employed Active Contour

Models (ACM) based on two different parameter optimisation

functions: using ground truth and raw image for optimisation

of the error function (abbreviated as GTEF & RIEF). In

addition, the combination of Canny and Otsu’s methods with

active contour models were also examined [14].

While these methods reached an accuracy of 53.5% to

59.2%, our two-class CNN can classify the pixels with 72.8%

correct-classification rate. When two independent CNNs are

used (one to detect Myelin and one to detect Axon), it is

possible that a pixel can be classified as both Myelin and

Axon. In this case we treat the pixel as background, since

it is ambiguous. The multi-class CNN can classify 79.7%

of the pixels, accurately. Helped by more information about

the spatial correlation of the output pixels during the training

phase, the multi-class deep convolutional encoder-decoder

has even better performance on pixel-wise classification with

accuracy of 82.3% (see Fig. 4). The standard deviation of

the classification rate across the 35 trials for two-class CNN,

multi-class CNN, and encoder-decoder methods are 4.9%,

5.7%, and 4.7%, respectively. We applied paired t-test to our

three-class CNN and deep convolutional encoder-decoder to

examine the significance of the accuracy improvement. The

corresponding p-value is 3.98× 10−8.

Fig. 4. Comparing the results for Pixels-wise Accuracy Measure. The
horizontal axis represents the pixel-wise accuracy measure in percentage.

Not only the three-class CNN and deep encoder-decoder

perform about 10% better than the two-class method but also

they give a segmentation that is qualitatively more similar to

human labelling than the two-class CNN, as shown in Fig.

5.c to 5.e. The encoder-decoder’s output is less noisy than the

two other methods; however, rectangular patterns correspond

to the borders of non-overlapping shifting windows are slightly

distinguishable in some regions.

The encoder-decoder method can classify a 700×700 image

in less than 6 seconds. In contrast, the CNN takes more

than 40 minutes to segment the same image. This is because

the encoder-decoder classifies 1024 pixels simultaneously,

whereas the CNN architecture has to classify one pixel at a

time.

For the encoder-decoder architecture, in order to examine

the relation between accuracy and position of the pixel in the

frame, we calculated the average accuracy for each pixel of

the frame using 357000 randomly chosen 32 × 32 windows

across the dataset (Fig. 6). The distribution of accuracy across

the 32 × 32 sampling frame explains how the position of

the pixel (which is not the only circumstance) can effect it’s

classification rate.

V. CONCLUSION

In this paper, we employed three different deep learning

architectures. The first architecture was designed based on

two-class classification for segmenting axon versus non-axon,

and also myelin versus non-myelin pixels. The second CNN

employed multi-class method to classify each pixel as axon,

myelin, or background. The third method is based on the

convolutional encoder-decoder architecture in which the pixels

in the frame can be segmented either as axon, myelin, or

background, simultaneously. The encoder-decoder architecture

has performed statistically significantly better than the others,

achieving a classification accuracy of 82.3%. All architectures

performed much better than previous methods used on this

data set. Since our images have no specific characterisations,

the deep learning architecture can be applied to similar appli-

cations.

ACKNOWLEDGMENT

We would like to express our gratitude to Dr Felix Werner

Wehri from University of Pennsylvania Medical Center for

providing us microscopy images of the excised mouse spinal

cord and also the human labelled ground truth.

All figures are licensed by the authors for use under the Cre-

ative Commons Attribution-ShareAlike 3.0 Unported License

(CC-BY-SA, https://creativecommons.org/licenses/by-sa/3.0/).

If reusing these figures please make reference to this article.

REFERENCES

[1] V. Badrinarayanan, A. Handa and R. Cipolla. “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-
Wise Labelling”, CVPR, 2014.

[2] V. Badrinarayanan, A. Kandell and R. Cipolla. “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation”,
CVPR, 2015.

[3] T. Brosch, Y. Yoo, L. Tang, D. Li, A. Traboulsee and R. Tam.
“Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion
Segmentation”, Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2015: 18th International Conference Munich, Ger-
many, vol. 9351, pp. 3–11, 2015.

[4] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille.
“Semantic Image Segmentation with Deep Convolutional Nets and Fully
Connected CRFs”, ICIR, pp. 1–14, 2014.

[5] A. Fernandez, J. L. Florez, J. R. Alonso, and J. A. Ferrari. “Image
segmentation by nonlinear filtering of optical Hough transform”, Applied
Optics, vol. 55, pp. 3632–3638, 2016.

[6] A. Fitzgibbon, M. Pilu, and R. B. Fisher. “Direct least square fitting of el-
lipses”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 21, pp. 476–480, 1999.

[7] B. Ginneken, A. Frangi, J. Staal, B. M. T. H. Romeny, and
M. A. Viergever. “Active shape model segmentation with optimal fea-
tures”, IIEEE Transaction on Medical Imaging, vol. 21, pp. 924–933,
2002.

[8] C. E. Hafer-Macko, K. A. S. MBBS, C. Y. Li, T. W. Ho, D. R. Cornblath,
G. M. McKhann, A. K. Asbury, and J. W. Griffin. “Immune attack on
the schwann cell surface in acute inflammatory demyelinating polyneu-
ropathy”, Annals of Neurology, vol. 39, pp. 625–635, 1996.

[9] J. E. Hall and A. C. Guyton, Guyton and Hall Textbook of Medical
Physiology, Saunders, Philadelphia: pa, 2011.

[10] G. Han, J. Wan, T. Breckon, and D. Randell. “Radicular cysts and
odontogenic keratocysts epithelia classification using cascaded haar clas-
sifiers”, Proc. 12th Annual Conference on Medical Image Understanding
and Analysis, 2008.

[11] M. Kass, A. Witkin, and D. Terzopoulos. “Snakes: Active contour
models”, International Journal of Computer Vision, vol. 1, pp. 321–331,
1998.

[12] F. Liu, G. Lin, and C. Shen. “CRF learning with CNN features for image
segmentation”, Pattern Recognition, vol. 48, pp. 2983–2992, 2015.

[13] J. Long, E. Shehamer, and T. Darrell. “Fully Convolutional Networks
for Semantic Segmentation”, 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3431–3440, 2014.

[14] B. MacDonell. “Spinal cord axon segmentation”, Master’s thesis, Uni-
versity of Otago, Dunedin, New Zealand, 2014.

[15] R. Miani and H. Aggrawal. “A comprehensive review of image enhance-
ment techniques”, Journal of Computing, vol. 2, pp. 28–13, 2010.

[16] H. L. More, J. Chen, E. Gibson, J. M. Donelan, and M. F. Beg. “A
semi-automated method for identifying and measuring myelinated nerve
fibers in scanning electron microscope images”, Journal of Neuroscience
Methods, vol. 201, pp. 149–158, 2011.

[17] D. Nie, W. Li, Y. Gao, and D. Shen. “Fully Convolutional Networks for
Multi-Modality Isointense Infant Brain Image Segmentation”, 2016 IEEE
13th International Symposium on Biomedical Imaging (ISBI), pp. 1342–
1345, 2016.

[18] H. Noh, S. Hong and B. Han. “Learning Deconvolution Network for
Semantic Segmentation”, ICCV, vol. 1, pp. 1520–1528, 2015.

(a) (b)

(c) (d) (e)

Fig. 5. (a) Original Microscopy 700 × 700 Image; (b) The corresponding ground truth image; (c) The output of applying two-class segmentation method
to the image; (d) The output of applying multi-class segmentation method to the image; (e) The output of applying deep convolutional encoder-decoder
segmentation method to the image. In images (b) to (e), white pixels and grey pixels are associated with the myelin and axon labels, respectively.

Fig. 6. Positional accuracy of deep convolutional encoder-decoder for 32×32
output window. Maximum and minimum accuracies can be seen in the central
region with bright colour and the areas close to the frame borders which are
darker, respectively.

[19] H. H. Ong, A. C. Write, S. L. Wehrli, A. Souza, E. D. Schwartz,
S. N. Hwang, and F. W. Wehri. “Indirect measurement of regional axon
diameter in excised mouse spinal cord with q-space imaging: Simulation
and experimental studies”, NeuroImage, vol. 40, pp. 1619–1632, 2008.

[20] P. Y. Yin and L. H. Chen. “A fast iterative scheme for multilevel
thresholding methods”, Signal Processing, vol. 60, pp. 305–313, 1997.

[21] HP. Sahoo, C. Wilkins, and J. Yeager. “Threshold selection using renyi’s
entropy”, Pattern Recognition, vol. 30, pp. 71–84, 1997.

[22] J. Schmidhuber. “Deep learning in neural networks: An overview”,
Elsevier, vol. 61, pp. 85–117, 2015.

[23] J. Zhang and J. Hu. “Image segmentation based on 2d otsu method with
histogram analysis”, 2008 International Conference on Computer Science
and Software Engineering, vol. 6, pp. 105–108, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

